WEBINAR

Machine to Machine Communication with Microsoft Azure IoT Edge & HiveMQ

WELCOME

Christoph Schäbel

lin

linkedin.com/in/cschaebel

www.hivemq.com

- Practical MQTT expert with multiple years of experience in the field
- HiveMQ Core Developer
- Background in scalable and reliable distributed systems and robotics

Kresimir Galic

linkedin.com/in/kresimir-galic

www.variant-logic.com

-8664a66a/

in

- Independent contractor
- Strong software engineering experience
- Certified Azure Solutions Architect
- Focused on IoT, from concept to the implementation
- Technical blogger
- Speaker

IoT Edge

WHAT WE WILL TALK ABOUT

- Shifting to the Edge
 - \rightarrow What is edge?
- Azure IoT Edge Concept
 - \rightarrow Cloud managed deployments \rightarrow Containerized environment
- Cloud Managed Deployment of HiveMQ Broker for M2M Communication

What We Call 'Edge'?

- Edge of network
- Closer to the devices/machines
- Outside of the cloud, but managed by the cloud

Copyright © by HiveMQ. All Rights Reserved.

Shifting To The Edge

Cloud

 \rightarrow Globally available, unlimited compute resources

• IoT

 \rightarrow Signals from sensors and machines, managed centrally by cloud

• Edge

 \rightarrow Intelligence offloaded from the cloud to IoT devices

• AI

 \rightarrow Intelligence capabilities, in the cloud and on the edge

Azure IoT Edge

Cloud Managed

 \rightarrow Enables rich management of Azure IoT Edge from Azure provide a complete solution instead of just an SDK

Cross Platform

 \rightarrow Containerized environment, enables targeting most popular edge operating systems such as Windows and Linux

Portable

 \rightarrow Enables Dev/Test of edge workloads in the cloud with later deployment to the edge as part of a continuous integration / continuous deployment pipeline

Extensible

 \rightarrow Deploying custom modules, third party solutions and/or AI

MQTT on the edge

- Lightweight protocol on top of TCP/IP
- Publish / Subscribe pattern
- De-coupling of sender and receiver
- Instant message delivery
- Open standard

MQTT History

MQTT 5 Features

- Compatibility and Portability improvements
- Session & Message Expiry
- Shared Subscriptions
 - \rightarrow Load balancing for clients
 - \rightarrow Multiple clients share the same subscription

User Properties

- \rightarrow User defined metadata
- \rightarrow Reduce bandwidth and costs

Improved Client Feedback

- \rightarrow More descriptive reason codes and messages
- \rightarrow Negative acknowledgements
- Request / Response pattern

HiveMQ ecosystem

Enterprise MQTT platform

Different Editions

- \rightarrow Commercial with enterprise features and up to 24/7 support
- \rightarrow Open Source "Community" edition

Open Source client library

 \rightarrow built for high-performance

Enterprise integrations

- \rightarrow Security
- \rightarrow Kafka

 $\rightarrow \dots$

Why HiveMQ on the Edge?

MQTT as open standard

- \rightarrow Interoperability
- \rightarrow Vendor neutrality
- \rightarrow HiveMQ supports 100% MQTT v5
- \rightarrow Azure has partial MQTT v3.1.1 support

Independent edge

- → Reliable intra-edge communication, without dependency on internet connectivity
- \rightarrow Vendor neutrality

Control data flow and cost

- \rightarrow Control which part of the IoT data is sent to the cloud or analyzed on the edge
- \rightarrow Reduce bandwidth and costs

Why HiveMQ and IoT Edge?

Bidirectional messaging

 \rightarrow Direct Communication of components / machines at the edge with each other

Simple deployment and maintenance

- \rightarrow Managed through Azure Cloud UI
- \rightarrow Simple concepts

Intelligent Edges

- \rightarrow (Pre-)analyze data at the edge
- \rightarrow Utilize Azure AI technologies

• High throughput on the Edge

- → Maintain high-throughput of messages on the edge, not every message has to go to the cloud
- \rightarrow Reduce bandwidth and costs

Use Cases

Intra Machine Communication

• Easy to manage and operate

 \rightarrow IoT Devices can be provisioned and managed in the cloud

Efficient intra machine communication

- \rightarrow Low latency
- \rightarrow Low overhead

Early data analysis

 \rightarrow Machine learning and AI for each machine

Cost effective

 \rightarrow Only selected and pre-analyzed data is streamed to the cloud

Inter Machine Communication

Reliable

- \rightarrow Factory stays independent of internet connectivity
- \rightarrow Each building / location can have own communications hub

Fast

 \rightarrow Lower latencies in local network

Interoperable

→ between machines and vendors due to standard protocol MQTT v5

Secure

 \rightarrow Separate security layers for on-premise and cloud

Intelligent

 \rightarrow Computing and analysis right at the edge

Azure IoT Edge Concepts

Concept - Azure IoT Edge Runtime

- Installs and updates workloads on the device.
- Maintains Azure IoT Edge security standards on the device.
- Ensures that IoT Edge modules are always running.
- Reports module health to the cloud for remote monitoring.

- Facilitates communication between downstream leaf devices and the IoT Edge device.
- Facilitates communication between modules on the IoT Edge device.
- Facilitates communication between the IoT Edge device and the cloud

Concept - Module

- Module image is a package containing the software that defines a module.
- **Module instance** is the specific unit of computation running the module image on an IoT Edge device.
 - \rightarrow The module instance is started by the IoT Edge runtime
- **Module identity** is a piece of information (including security credentials) stored in IoT Hub, that is associated to each module instance.
- Module twin is a JSON document stored in IoT Hub, that contains state information for a module instance.
- SDKs to develop custom modules in multiple languages (C#, C, Python, Java, Node.JS)

Concept - Routing

• Query Language

FROM

/messages/modules/TelemetrySubscri berModule/outputs/* INTO \$upstream

Concept - Device Management

IoT in the Cloud vs Edge

IoT in the Cloud

Remote monitoring and management

Merging remote data from multiple IoT devices

Infinite compute and storage to train machine learning and other advanced AI tools

IoT on the Edge

Low latency tight control loops require near real-time response

Protocol translation & data normalization

Identity translation

HiveMQ on Azure IoT Edge

HiveMQ on Azure IoT Edge

Copyright © by HiveMQ. All Rights Reserved.

Deploying HiveMQ Broker from the Cloud

- Deployment manifest
- Deploying at scale

```
"HiveMQModule":{
   "settings":{
      "image":"docker.io/hivemg/hivemg4:latest",
      "createOptions":{
         "HostConfig": {
            "PortBindings": {
               "1883/tcp":[
                     "HostPort":"1883"
               "8080/tcp":[
                      "HostPort":"8080"
   "type":"docker",
   "version":"1.0",
   "status":"running",
   "restartPolicy":"always"
```


HiveMQ on Azure IoT Edge

Copyright © by HiveMQ. All Rights Reserved.

Deploying Custom Module from the Cloud

- Deployment manifest
- Deploying at scale

HiveMQ on Azure IoT Edge

Copyright © by HiveMQ. All Rights Reserved.

Deploying Custom Module from the Cloud

- Topic name can be a part of Module Configuration (Module Twin)
- Using HiveMQ Client Library

```
public static void ConnectToMqttBroker(String topicName)
    mgttClient.connectWith()
    .send()
        if (throwable != null) {
            System.out.println("Authentication failed. Please check your credentials!");
            System.out.println("Connected to HiveMQ broker, subscribing to the topic ''" + topicName + "''.");
            mqttClient.subscribeWith()
            .topicFilter(topicName)
            .callback(messageConsumer)
            .send()
            .whenComplete((subAck, throwable2) -> {
                if (throwable2 != null) {
                    System.out.println("Failed to subscribe to the topic ''" + topicName + "''.");
                } else {
                    System.out.println("Subscribed to the topic '" + topicName +"''");
```

HiveMQ on Azure IoT Edge

Copyright © by HiveMQ. All Rights Reserved.

Routing Messages and Sending Results to the Cloud

- Sending the message to the module output
- Azure IoT Edge routes decide where the message goes next (another module, cloud - IoT Hub)
- "TelemetrySubscriberModuleToIoTHub": "FROM /messages/modules/TelemetrySubscriberModule/outputs/* INTO \$upstream"

```
protected static class MessageConsumer implements Consumer<Mqtt5Publish> {
    private ModuleClient moduleclient;
    @Override
    public void accept(Mqtt5Publish t) {
        byte[] payload = t.getPayloadAsBytes();
        String str = new String(payload, StandardCharsets.UTF_8);
        System.out.println("Received message from the broker: " + str);
        Message moduleMessage = new Message(t.getPayloadAsBytes());
        this.moduleclient.sendEventAsync(moduleMessage, eventCallback, moduleMessage, App.OUTPUT_NAME);
    }
    public void setModuleClient(ModuleClient moduleClient) {
        this.moduleclient = moduleClient;
    }
}
```


Machine to Machine Communication

- Clients/Machines can leverage HiveMQ client library or any other MQTT library
- Using HiveMQ broker to leverage MQTT features
- One example is 'LastWill' message to determine whether machine got disconnected for triggering the alarms through the cloud
- Broker for machines with additional logic embedded for preprocessing before alarming another machine
- Full code available on GitHub:

https://github.com/kgalic/IoTEdgeM2MWithHiveMQ

What's next?

What's next?

• AI / ML at the edge and in the cloud

- \rightarrow (Pre-)analyze data at the edge
- \rightarrow Utilize Azure AI technologies

Even deeper integration

 \rightarrow HiveMQ extensions that directly integrate with IoT Edge

High availability at the edge

- \rightarrow Deploy HiveMQ clusters
- \rightarrow Multiple IoT Edge Devices at the same location

HiveMQ Cloud <-> Azure Cloud

- \rightarrow Managed MQTT brokers through HiveMQ Cloud
- \rightarrow Big Data analytics with Azure

Resources

Get Started with MQTT

ANY QUESTIONS?

Reach out to community.hivemq.com

THANK YOU

