WEBINAR

HiveMQ + Kafka: The Ideal Solution for IoT

MQTT Data Integration

WELCOME

Dominik Obermaier

@dobermailinkedin.com/in/dobermai/

HiveMQ CTO

- Strong background in distributed and large scale systems architecture
- OASIS MQTT TC Member
- Author of "The Technical Foundations of IoT"
- Conference Speaker and Author
- Program committee member for German and international IoT conferences

Magi Erber

Product Manager @HiveMQ

- Conference Speaker
- Author
- Expert for cloud native technologies and Apache Kafka

The Internet of Things is HUGE

The Internet of Things is HUGE

Millions of Devices

(11)

-

00013

.

(e (tra () (tra ()

(D (B)

500 mm chi 500 chi 500 mm chi 500 mm

-

0 1

--

10 10 01

00 00

000 000

NILLIN .

112

....

10 100

.....

000 000

(m) (** (***)

(11)

CO) CO

TRANGE .

Confidential and Proprietary. Copyright © by HiveMQ. All Rights Reserved.

Challenge 1 - Scalability

- Enterprise IT infrastructure is **not suitable** for IoT
- Massive scalability required for millions of devices

Challenge 2 - Instant Data Delivery required

- End customers are used to instant user experiences like instant messaging with WhatsApp
- Critical systems need reliable and *instant* data transfer like manufacturing systems
- **Bidirectional communication** required

Challenge 3 - Unreliable Networks

- Customer experience for IoT apps and devices must be excellent even when internet connectivity is flaky
 - → Especially for moving "devices" like cars
- Devices and apps must be easy to program and maintain, complexity should be in the cloud not on the device
 - \rightarrow Cloud is easier to update than physical devices

Web Technology used today is built for the Internet of Humans,

NOT for the **Internet of Things**

Confidential and Proprietary. Copyright © by HiveMQ. All Rights Reserved.

same a subben through the standing of

We need **open standards** designed for the **Internet of Things**

🐮 HIVE MQ

AT DESCRIPTION

Confidential and Proprietary. Copyright © by HiveMQ. All Rights Reserved.

What Is MQTT?

- (I)IoT Messaging Protocol
- Created for extreme scale and instant data exchange
- Publish/Subscribe based architecture
- Easy on the device side, pushes all implementation complexity to the server
- Built for machines and constrained devices (binary, data agnostic)
- Designed for reliable communication over unreliable channels

Benefits of **MQTT**

- Lightweight and efficient
- Bi-directional communications
- Scale to millions of things
- Reliable message delivery
- Support of unreliable networks
- Security Enabled

MQTT Use Cases

MQTT Use Cases

Push Communication

Reliable Communication over unreliable networks

Constrained Devices

Low Bandwidth and High Latency

Industrial Message Bus

CRedMonk

the developer-focused industry analyst firm

Videos Research Events About Team Services Clients Contact

CHARTING STACKS

The Continued Rise of Apache Kafka

@fintanr | May 7, 2017

Ƴ f in ☺

TL; DR – Usage of Kafka continues to grow at an extremely fast pace across multiple industry segments. Kafka is becoming a core part of data pipelines at scale.

When we first looked at data around Kafka early last year we commented on how it was fast becoming one of the key technologies in the new data stack. Its use in areas such as data pipelines and streaming continues to grow, something born out in both our own conversations and in the recent Kafka survey completed by Confluent

Apache Kafka

- Distributed streaming platform
- Used by over one third of Fortune 500 companies
- Most popular Apache project on GitHub
- Central messaging and distributed stream processing application

Apache Kafka Strengths

- Optimized to stream data between systems and applications in a scalable manner
- Scale-out with multiple partitions for a topic and multiple nodes
- Perfect for inter-system communication
 - inside trusted network
 - with stable IP addresses and connections and
 - limited number of producers and consumers

Apache Kafka

Apache Kafka

Apache Kafka for IoT -How does it fit in?

IoT Reality Challenges

Challenge 1 - Millions of Connections

IoT REALITY

- Clients are connected over the Internet
- Load Balancers are used as first line of defense
- IP addresses of infrastructure (e.g. Kafka nodes) not exposed to the public Internet
- Load Balancers effectively act as proxy

& kafka

Kafka Clients need to address Kafka brokers directly, which is not possible with L4 load balancers

Challenge 2 - Scalability and Topics

IoT REALITY

- IoT devices typically are segmented to use individual topics
- Individual topics very often contain data like unique device identifier
- Multiple millions of topics can be used in a single IoT scenario
- Ideal for security as it's possible to restrict devices to only produce and consume for specific topics
- Topics are usually dynamic

Kafka is hard to scale to multiple thousands or even millions of topics

Challenge 2 - Scalability and Topics

my-iot-devices/ger/group-1/car-0000001/speed

my-iot-devices/ger/group-1/car-0000001/location

<u>my-iot-devices/ger/group-1/car-0000001/motor-heat</u>

car-1045107

my-iot-devices/eu/group-3/**car-1045107**/speed my-iot-devices/eu/group-3/**car-1045107**/location

my-iot-devices/eu/group-3/car-1045107/motor-heat

my-iot-devices/usa/group-1/**car-5239284**/speed my-iot-devices/usa/group-1/**car-5239284**/location

my-iot-devices/usa/group-1/car-5239284/motor-heat

HIVE MQ

Challenge 3 - Constraint Devices

IoT REALITY

- IoT devices are typically very constrained (computing power and memory)
- Device programmer need very simple APIs AND full flexibility when it comes to library behavior
- Single IoT devices typically don't require lot of throughput
- Important to limit and understand the number of TCP connections, especially over the Internet. Very often only one TCP connection to the backend desired

- Kafka Clients are reasonable complex by design (e.g. use multiple TCP connections)
- Libraries optimized for throughput
- APIs for Kafka libraries are simple to use but the behavior sometimes isn't configurable easily (e.g. async send() method can block)

Challenge 4 - Unreliable Network

IoT REALITY

- Features like on/off notifications are often required
- Unreliable networks require lightweight keep-alive mechanisms for producers and consumers (half-open connections)
- Device communication over the Internet requires minimal communication overhead

- No on/off notification mechanism
- No Keep-Alive mechanism individual TCP connections for producers
- Kafka Protocol for producers rather heavyweight over the Internet (lots of communication)

0

Kafka is well suited for data ingestion of cloud native server applications,

but not well suited for loT device

data connectivity

Confidential and Proprietary. Copyright © by HiveMQ. All Rights Reserved.

Challenges for Apache Kafka in IoT

- Kafka brokers need to be addressed directly by the clients
- Kafka does not support large amounts of topics

Kafka clients are reasonably complex and resource intensive compared to client libraries for IoT protocols

Kafka clients require a stable TCP connection for best results

It's unusual (and very often not even possible at all) to have tens of thousands or even millions of clients connected to a single Kafka cluster

1	+++
	X
	*

Kafka is missing some key IoT features

How to use the best of both worlds?

A Love Story Made in Heaven

MARTH & Solar & Solar

HiveMQ - Enterprise MQTT Broker

- HIVEMQ
- Connectivity and Messaging Platform
- Based on standard IoT protocol (MQTT)
- Scales to more than 10 million always-on devices
- Allow multi-cloud and Enterprise software integration

🖄 HIVEMQ

HiveMQ - Enterprise MQTT Broker

Kubernetes, Docker, OpenShift

Public or private cloud (AWS, MS Azure...) or on-premise

HiveMQ Enterprise Extension for Kafka

- Native implementation of Kafka protocol
- End to-end persistent messaging guarantees
- Bi-directional communication
- High Scalability and resilience
- Support of Local Schema Registry (Avro, JSON)
- Support of Confluent Schema Registry (Avro)
- Stream to multiple Kafka instances

Support of Different Kafka Distributions

• Apache Kafka (Open Source)

Confluent Cloud

Confluent Platform

AWS MSK

Multiple Kafka deployments simultaneously

High Scalability and Resilience

Scales elastically with the MQTT broker

No message loss: Queues messages, if Kafka cluster is temporarily not available

Extreme throughput. Can write hundreds of thousands of MQTT

messages per second to Kafka

Copyright © by HiveMQ. All Rights Reserved.

- MQTT to Kafka Topic Mapping
 - One to <u>One Topic Mapping</u>

 Aggregating MQTT Topics to Fireho filters)

- Kafka to MQTT Topic Mapping
 - One to One Topic Mapping
 - One (Namy) to many Topic Mapping

Message transformation (using parts of Kafka message)

Copyright © by HiveMQ. All Rights Reserved.

Message Transformation

Message Multicasting

Support of Schema Registries

Apache Kafka

- Kafka does not care about message formats
- No verification of message correctness
- Systems are evolving and message formats will change

Schema Registries

- Guarantee the correct functionality of messaging
- Message validation
- Schema evolution

- Support of Local Schema Registry
 - JSON and Avro messages
 - Message validation

Local Schema Registry

Support of Schema Registries

Apache Kafka

- Kafka does not care about message formats
- No verification of message correctness
- Systems are evolving and message formats will change

Schema Registries

- Guarantee the correct functionality of messaging
- Message validation
- Schema evolution

- Support of Local Schema Registry
 - $_{\circ}$ $\,$ $\,$ JSON and Avro messages $\,$
 - Message validation

- Support of Confluent Schema Registry
 - Avro messages
 - Message validation
 - Schema evolution

Confluent Schema Registry

Observability of Communication

- Connect millions of IoT devices, over unreliable networks, to seamlessly send data to one or multiple Kafka clusters
- Route IoT device data to multiple Kafka clusters allowing for a single IoT platform to support different types of devices and forward device data to different back-end applications
- Poll information from one or multiple Kafka clusters and distribute this information to millions of IoT devices
- Support of all MQTT 3.1.1 and MQTT 5 features
- Map millions of MQTT topics to a limited number of Kafka topics using MQTT wildcards
- Enable end to-end persistent messaging guarantees from device to Kafka so no messages are lost
- Monitor MQTT messages written to Kafka using the HiveMQ Control Center

Copyright $\ensuremath{\mathbb{C}}$ by HiveMQ. All Rights Reserved.

HiveMQ Enterprise Extension for Kafka - Demo

	HiveMQ Control Center	x 🕤 Control Center x +
$\leftarrow \rightarrow$	C () Nicht sicher 52.28.155	54:9021/clusters/IStaN6bLR_a-jipIKZNr0A/management/topics/sensor-data/overview 🏠 🛈 🤊 🔾 🍓 :
:Ecor	fluent	¢ ≡
88	CONTROLCENTER.CLUST_	ALL TOPICS >
CO Chaster 1	Brokers	sensor-data
	Topics	Overview Metsages Schema Configuration
	Connect	
	KSQL	

Broker followers

00	ทรเ	ime	90

Cluster settings

Production	Consumption	
63.437K	63.437K Bytes per second	<u>الم</u>
Partitions		
0	0	
Under replicated partitions	Out of sync replicas	

Partition id

0

Status

Available

Broker leader

1

Resources

Get Started with MQTT

MQTT Essentials Series

MQTT at OASIS

ANY QUESTIONS?

Reach out to community.hivemq.com

THANK YOU

