
Architecture proposal
for the VDA 5050

Technical White Paper
©2020

The communication of order and status information between
driverless transport vehicles and control system

VDA 5050 A proposal for a MQTT Reference Architecture

2

Goal of this document .. 3

Executive summary .. 3

Short Introduction of the VDA 5050 Specification 4

What are the Challenges and Requirements 4

Components of the Architecture Proposal Using HiveMQ 4

Message Broker - HiveMQ ... 4

 HiveMQ Extension System ... 5

Actors .. 5

Related Components ... 5

 Message Broker Features .. 6

 Key Features Reliability, Scalability, Performance 6

 Monitoring, Logging, MQTT Tracing ... 7

Security Expectations ... 9

 Security at the transport level .. 9

 Security at application level ... 9

 Enterprise Security Extension ...10

 Security by Data Integrity ...11

 Security at Infrastructure Level ...12

Order-State Use case ...12

 Order - State MQTT Message Flow ..12

 Topic Structure ..12

 MQTT Client characteristics ...13

 MQTT Publish - Orders and State ...13

 MQTT Will, Client offline and online event detection14

Conclusion ..15

Appendix ...16

Client Implementation with HiveMQ MQTT library16

 AGV Client ..16

 CS Client ..18

HiveMQ Configuration recommendations19

Glossary ... 20

TABLE OF CONTENTS

globe www.hivemq.com

3

Executive summary

This document describes a reference architecture for

communication between autonomous transport vehicles

(AGVs) and a control system for intralogistics processes.

The description of the architecture is based on the

specification VDA 5050. According to VDA 5050, the MQTT

protocol will be used as the standard communication

protocol between the actors.

In addition to the functional requirements, what are the

challenges for a production ready deployment? What

architecture components are necessary in detail?

1. A key component of the architecture is the message

broker. It has to be fail-safe, robust and scalable, as well

as providing the necessary performance guarantees.

HiveMQ is a powerful, cluster-capable, fail-safe MQTT

broker that supports 100% of all functions of the MQTT

protocol (all versions MQTT 3 and MQTT 5).

2. The overall correct security implementation for the

architecture is critical. Which security mechanisms can be

used, are there standard solutions that fit most scenarios,

can different mechanisms be used for different clients?

HiveMQ provides a freely configurable standard solution

that offers various client authentication and authorization

mechanisms.

3. How can the overall application be monitored in a simple,

efficient way? What metrics are available and how can

administrators proactively intervene during operations.

What possibilities are given for post-mortem analyses?

HiveMQ offers a control center for the monitoring of

essential metrics, tracing of individual clients and

extensive logging, as well as the possibility of connecting

external monitoring systems to visualize a large number of

relevant metrics.

4. How can additional business-specific processes be

integrated in a simple and efficient way? The HiveMQ

Extension SDK offers a flexible API to address almost any

conceivable integration challenge.

5. Which properties for the MQTT actors involved are

required for a well-designed implementation of the

architecture? MQTT 5 tends a lot of new features that

would help to implement the scenario described in VDA

5050 elegantly, such as, User properties, payload format

indicator or content types or the request response pattern.

This document also contains proposals for broker

configurations and examples for the MQTT client setups

useful in the Order - State Communication Scenario.

This document describes a reference architecture for the

communication between driverless transport vehicles and

a control system. The architecture is based on the interface

specification VDA 5050, MQTT as the communication

protocol and the HiveMQ Broker. The document focuses

on the main use case described in the VDA 5050: The

communication of order and status information between

AGV and Control System.

Goal of this document

https://www.vda.de/dam/vda/publications/2019/Logistik/VDA5050.pdf
https://www.vda.de/dam/vda/publications/2019/Logistik/VDA5050.pdf

Short Introduction of the
VDA 5050 Specification

In the VDA 5050 from August 2019 version 1.0. an interface

for communication between driverless transport vehicles

(AGV) and a control system is described. The definition of

a communication interface for driverless transport systems

(AGVs) aims to simplify the connection of new vehicles to

an existing control system. A standardized communication

interface also allows to operate AGV’s from different

manufacturers in parallel within the same work environment.

VDA5050

The specification includes:

• The definition of a basis for the integration of transport

systems in a continuous process automation.

• Increasing flexibility through increased autonomy of

vehicles.

• Reduction of implementation time via „Plug & Play“

mechanisms.

• The use of a central control system with the

corresponding logic for all vehicle types and

manufacturers.

• A common interface between vehicle and control system.

• The possibility of integrating proprietary control systems.

To implement the goals, the VDA 5050 specifies

• MQTT as communication protocol between actors

• JSON as data format

What are the Challenges and
Requirements

MQTT has become the IoT standard for connecting devices

in general and also for AGVS. Now the challenge is to

describe and specify what the best solution would look like.

Currently, a number of MQTT Implementation solutions are

available on the market, providing different features. Beside

the support of the MQTT protocol itself, additional key

features are necessary to run a secure and stable system.

Challenges are:

• The VDA specification describes a couple of data related

traits that could be perfectly described with MQTT 5

features. Therefore, a MQTT solution should support all

MQTT 5 features.

• Security is a very important key feature that should be

supported both by the client and the broker.

• To support system changes without downtime, the

solution needs to be highly available and support rolling

upgrades and migration scenarios.

• The MQTT Broker must be scalable and support a

growing number of vehicles

• To Integrate other systems or add business functionality

via plug & play, the MQTT Broker should be extensible.

• The Data format is specified by the VDA and should be

validated before publishing, to make the solution more

robust and secure.

• Central monitoring and tracing for specific clients, topics

or messages is essential in the production environment.

Components of the Architecture
Proposal Using HiveMQ

The following paragraph describes the components required

for a robust MQTT-based solution that should be used to

implement the VDA specification.

Message Broker - HiveMQ
HiveMQ is an enterprise-ready MQTT broker that is

specifically tailored to business needs of IoT use case

scenarios.

The HiveMQ enterprise MQTT broker provides fast, efficient,

and reliable movement of data to and from connected

IoT devices. HiveMQ fully implements the MQTT protocol

version 5 and 3 and can support mixed version scenarios.

VDA 5050 A proposal for a MQTT Reference Architecture

4

https://www.vda.de/dam/vda/publications/2019/Logistik/VDA5050.pdf
http://www.hivemq.com

HiveMQ Extension System
HiveMQ offers a free, open-source extension SDK. The

HiveMQ extension framework provides an open API that

allows developers to create custom extensions that suit

their specific infrastructures. The extension framework can

be used to extend HiveMQ with custom business logic or to

integrate virtually any system into HiveMQ.

A couple of pre build extensions are available on the HiveMQ

Marketplace.

Actors
Clients are all participants that use an interface to

communicate via MQTT. In this scenario we have the

following clients: the Control System (CS), and any

Automated Guided Vehicle (AGV)

A lot of MQTT 5 client implementations are available for

different languages, for example Eclipse PAHO – with MQTT

5 support for C and C#, MQTTnet for .net environment and

HiveMQ MQTT Client, an open source MQTT Java library

that was developed for use in high-performance

scenarios and low memory requirements.

The HiveMQ MQTT client library includes

following features with:

• Complete implementation of all MQTT 5.0

and 3.1.1 features, including TLS / SSL

• Message persistence, Offline buffering,

Automatic Reconnect, Backpressure support,

• Websocket support, HTTP CONNECT

support, and many other features

 

Related Components
The figure beside shows the components of the

architecture that are related to each other in the

MQTT relevant environment.

From an external vantage point, the HiveMQ message broker

operates as one logical unit, internally as a cluster of nodes.

The Broker uses the security extension, a standard solution

for authentication and authorization, an extension for

JSON payload validation, and an extension for tracing and

monitoring. Metrics are provided in JMX format that can be

monitored centrally. The same applies to the event logs and

other logging information.

The actors of the HiveMQ broker are the MQTT clients.

As a main use case, the control system (CS) client sends

information to the driverless transport vehicles (AGV) and

consumes the relevant status or possible error information

of the vehicles.

The data for the central control system (CS) is provided

in the form of a basic configuration and the device

configurations for each vehicle (AGV). The JSON formats

to be used are defined in JSON schemes. The schemes are

available and can be used by the broker as well as the control

system (CS) for validation purposes.

All clients (control center and transport vehicles) communicate
with the broker via a load balancer.

globe www.hivemq.com

5

https://www.hivemq.com/extensions/
https://www.hivemq.com/extensions/

Message Broker Features
The central MQTT infrastructure component is the HiveMQ

MQTT broker. The MQTT Broker has to be fail-safe, robust

and scalable, and providing the necessary performance

guarantees. HiveMQ is a MQTT broker supporting 100% of

the MQTT protocol in all MQTT versions (MQTT 3 and MQTT 5).

HiveMQ is reliable, scalable fail-safe and high performing.

The following features should be configured for the Message

broker to enable these requirements:

Key Features: Reliability, Scalability, Performance

RELIABILITY

The cluster is set up so that incoming messages

and data from the clients in the cluster are distributed

evenly across all nodes. The replication of the data in the

cluster should be configured relative to the number of

nodes, whereby at minimum, the replication of 1 - all data is

replicated at least once - is set.

SCALABILITY

A dynamic cluster configuration is recommended

in order to be able to carry out migration scenarios during

operation without down-time or to optimally process a

growing number of clients or messages.

A HiveMQ MQTT broker cluster consists of several individual

HiveMQ nodes. Each node can experience a different stress

level at any given time due to the number of MQTT PUBLISH

messages to process, retained messages, client connect

rates, queued messages and other operations that can cause

overload for an individual broker.

HiveMQ provides built-in cluster overload protection. Each

HiveMQ cluster node is able to reduce the rate of incoming

messages from MQTT clients that significantly contribute to

the overload of the cluster.

This mechanism improves the resilience of a HiveMQ cluster

dramatically as individual MQTT clients can be throttled if

the HiveMQ cluster experiences an overload. With this

mechanism, HiveMQ is able to recover itself from stress

situations (ill-behaved clients or DDOS Attacks) without

notable service degradation for all other MQTT clients.

A Clustering HiveMQ paper describes this in detail.

PERFORMANCE

HiveMQ with its extension system, including the

provided open source and enterprise extensions, is 100%

designed to be performant in every way. HiveMQ is a highly

scalable Enterprise MQTT Broker designed for lowest latency

and very high throughput.

A lot of performance tests and production systems with

million devices and high throughput prove the performance.

Benchmarks are available here: HiveMQ Benchmark 10

million and HiveMQ 3 Benchmark on AWS.

RUNS EVERYWHERE

At last, in short - HiveMQ can be setup in any

environment, like VMs, Docker on VMs, Cloud Environments

like Amazon, Azure or Google Cloud and of course on bare

metal with Linux systems. It works perfectly with Cluster

Management Systems like Kubernetes or Application

Platforms like OpenShift.

HiveMQ runs in many different environments and connects
to a wide range of clients and libraries.

VDA 5050 A proposal for a MQTT Reference Architecture

6

https://www.hivemq.com/downloads/clustering_hivemq.pdf
https://www.hivemq.com/benchmark-10-million
https://www.hivemq.com/benchmark-10-million
https://www.hivemq.com/benchmark-hivemq3

Monitoring, Logging, MQTT Tracing
HiveMQ offers a Control Center to monitor the behavior

of the message broker and provides a fundamental set of

metrics. Operators can also view the status of a specific

MQTT client and setup trace recordings of the messages

between a specific client and the broker. This allows for

more effective troubleshooting of deployed systems.

A couple of pre-build extensions are available to monitor the

MQTT Infrastructure by the HiveMQ metrics.

The HiveMQ Logging system uses the standard logging

framework. Log files can be configured in a fine-grained

fashion. Furthermore, all client related MQTT events are

logged in the event log file:

• Client Connection

• Client Disconnection

• Dropping of Messages

• Client Session Expiry

HiveMQ logs can be streamed into a central logging system.

The HiveMQ Control Center should be used for human

monitoring the systems, esp. MQTT message throughput,

specific kind of errors for MQTT message lost and the trace-log.

The Control Center should only be accessible from trusted

IPs. Specific Access Roles can be defined within the usage

of the Enterprise Security Extension.

The HiveMQ Control Center provides a couple of useful

administration views.

The Dashboard View allows an administrator to monitor the overall health of a
HiveMQ deployment. It provides real-time monitoring on the number of client
sessions, inbound/outbound publish rate, subscriptions, retained messages
and queued messages. Each individual HiveMQ node can also be queried for
performance stats pertaining to the node.

globe www.hivemq.com

7

Beside the core metrics, that are visible in the Control Center,

HiveMQ provides several hundred metrics that are very helpful

and can be used for monitoring. Monitoring is an important

part of operations for any application and HiveMQ is no

exception. It is not difficult to create a monitoring setup for

HiveMQ for Tools like Prometheus, InfluxDB and Grafana. For

these tools there are open source extensions available, so that

it is easy to plug in the needed functionality. Also, an initial

Grafana dashboard template is available as a starting point.

VDA 5050 A proposal for a MQTT Reference Architecture

8

The Client Overview provides a snapshot of
all the MQTT client sessions. This overview
allows for filtering based on Client ID,
Connection Status, Client name and IP
address. From the client overview an
administrator can drill down into a specific
client information.

The client detail view provides all the
detailed information about an MQTT client
session, including client IP, Keep Alive
time period, TLS information, Last Will
and Testament, etc. An administrator is
also able to disconnect clients or remove
a client session and add and remove
subscriptions.

At last, HiveMQ CC provides MQTT
Trace Recordings. A Trace Recording
is a combination of filters which allows
you to select messages of specific
clients or topics, which are logged
to a file in a human readable format.
Trace recordings are very useful for
diagnostics and debugging irregular
behavior of a client.

globe www.hivemq.com

9

Security Expectations
Security in general is a major feature in every IoT Application,

and should be supported from the beginning.

Security can be divided in the areas where it occurs.

Security at the transport level
Since MQTT is based on TCP, all communication can

generally be encrypted with TLS. The latest version for TLS

should be used if possible.

When TLS is used correctly, a third-party observer can only

infer the

• Connection endpoints,

• Type of encryption, as well as the frequency and

• an approximate amount of data sent,

but cannot read or modify any of the actual data.

Finally, only those protocols and ports that are actually used,

should be allowed in the broker configuration.

Security at application level
Each connected client should be authenticated during the

connect phase and only authenticated Clients should be able

to send messages or subscribe to topics. Authentication

information should be stored secure and safe encrypted.

Management tools for the authentication infrastructure –

if used, should be available.

CLIENT AUTHENTICATION

The way to authenticate is not specified in the VDA5050

specification, therefore we will reference the various ways

on how to authenticate MQTT clients as described in MQTT

Security Fundamentals.

The HiveMQ Enterprise Security Extension provides a

standard solution that supports different authentication

methods for the participating MQTT clients, described in the

chapter below.

CLIENT AUTHORIZATION

All MQTT clients involved, should only have access to

the topics that are relevant. This can be accomplished by

applying a role-based model where the permissions for

topics can be assigned to specific roles. MQTT clients can

be defined as owners of these roles.

Two roles are visible in the scenario described in VDA 5050.

(Control system and vehicle). The correct authorization and

assignment of these roles before publishing and subscribing

to any topic must also be achieved. In general, a Whitelist

approach, including pattern replacement at client specific

topic filtering should be used. That means, no wildcard

subscription or access to any other topic, that is not used in

the scenario should be allowed.

The CS-Client subscribes with the “+” wildcard pattern for

the placeholders and can publish to the order topic for each

client. The AGV Clients should only have pub/sub right for

their own topic path, specified by the key information like

interface name, version, manufacturer and the serial number.

TLS provides

• Encryption

• Authentication

• Data Integrity

https://www.vda.de/dam/vda/publications/2019/Logistik/VDA5050.pdf
https://www.vda.de/dam/vda/publications/2019/Logistik/VDA5050.pdf
https://www.hivemq.com/mqtt-security-fundamentals/
https://www.hivemq.com/mqtt-security-fundamentals/
https://www.hivemq.com/docs/latest/enterprise-extensions/ese.html

VDA 5050 A proposal for a MQTT Reference Architecture

10

Enterprise Security Extension
The HiveMQ Enterprise Security Extension can be used

for Authentication and Authorization. The HiveMQ ESE

expands the role, user, and permission-management

capabilities of HiveMQ Enterprise and Professional editions.

HiveMQ ESE allows you to use different sources of external

authentication and authorization data to authenticate and

authorize MQTT clients. In the HiveMQ ESE, you define

realms to partition your server into protected areas that can

each have their own authentication and / or authorization

scheme.

The HiveMQ ESE processes incoming client connections

in highly configurable pipelines that offer customizable

stages to handle the authentication and authorization of your

clients.

The Main Features of the Security Extension

• The Extension provides Security integration patterns for

Username & Password, OAUTH 2.0 (JWT), LDAP, SQL

Database and x.509 client certificates are available.

• The Extension can also be used for RBAC to the HiveMQ

Control Center.

• It is easy to switch Authentication variants, as different

variants for the different clients are possible at the same

time.

• The Authentication mechanism can differ from

authorization mechanism. So as an example,

authentication can be done with LDAP and authorization

with an external RBAC system.

• There is no further implementation effort for the most

common security methods.

A detailed description for different usage possibilities for the

security extension can be found in the documentation of the

HiveMQ ESE.

Rough description of the mechanism of authentication and authorization with
the Security Extension and a central external data source where authentication data are handled.

globe www.hivemq.com

11

SECURITY BY DATA INTEGRITY

As specified in VDA 5050 JSON is the preferred payload

format. Furthermore, a couple of information about the

message content and the client itself could be handled with

the usage of MQTT 5 Features. With the usage of these

features, it is not necessary to parse the payload, to decide

about basic data correctness.

MQTT 5 specific features can be used to specify meta

information.

• The Feature ‘payload format indicator’ can be used to

indicate that the payload is UTF-8.

• The Feature ‘content-type’ can be specified by setting it

to ‘application/json’.

• User properties can be used to specify client specific

header information.

Additionally, data integrity can be ensured by the verification

of the payload.

JSON Schema Validation

• Each PUBLISH Message can be parsed against the

expected JSON-Schema to verify if the right content is

sent.

• Parsing can be executed on the broker side by a generic

JSON Validation Extension.

• Errors can be handled on the broker side in a generic

manner and published to a pre-configured topic.

PUBLISH Flow with usage of a validation extension.

VDA 5050 A proposal for a MQTT Reference Architecture

12

SECURITY AT INFRASTRUCTURE LEVEL

At the infrastructure level a couple of security actions need

to be taken:

• Only expected traffic should be forwarded to downstream

systems, so if UDP traffic is not used by MQTT, this

should be blocked in general.

• Traffic should only be allowed to ports needed for the

MQTT system (1883, 8883).

• The Operating System should be kept updated and

libraries should be kept clean.

• Topic namespaces must be separated. Manufacturers

may not consume data of other manufacturers.

• The MQTT broker configuration should limit the maximum

message size to the maximum needed for the use case.

 

ORDER-STATE USE CASE

The main use case, described in the VDA 5050 specification

describes the necessary communication flow for order and

status information exchange between AGV and CS. This

use case will be considered in more detail in the following

chapter.

ORDER - STATE MQTT MESSAGE FLOW

TOPIC STRUCTURE

In the specific scenario for order and state information

exchange, the topic structure could be designed as following

The CS-Client subscribes with the “+” wildcard pattern for

the placeholders and can publish to the order topic for each

client. The AGV Clients should only have pub/sub right for

their own topic path, specified by the key information like

interface name, version, manufacturer and the serial number.

A set of topics that are used to handle the business logic

are described in the VDA 5050. Each topic starts with a

subtopic, with dynamic placeholder to separate different

communication partners and devices.

Each AGV should use its own Basis topic.
{interfaceName}/{majorVersion}/{manufacturer}/

{serialNumber}/

Subscriptions and publishes to topics

that are not matching the base topic,

should be forbidden by default within

the authorization process for any

participating client.

Figure 5: Order Example Flow

globe www.hivemq.com

13

The subtopics order and orderState will be used for

information exchange.

The topic deviceState is useful to get information when a

AGVs is going online and offline to handle error cases and

initialize devices in specific circumstances.

Each AGV subscribes to their own order topic:

{interfaceName}/{majorVersion}/{manufacturer}/

{serialNumber}/order

and publishes to the corresponding orderState topic.

The control system subscribes to each state topic of all AGV

clients.

+/+/+/+/ orderState

and to each deviceState topic of all AGV clients.

+/+/+/+/ deviceState MQTT Client characteristics

MQTT Client characteristics
Each AGV Client has a unique Client Identifier – derived from

the keys

{interfaceName}-{majorVersion}-{manufacturer}-

{serialNumber}

The Control System can be designed as one backend client,

or if client load balancing is needed, as a group of Control

System clients. In this case shared subscriptions must be

used, so that incoming messages (order and device States)

are distributed over the array of control system clients. Each

client should also have a unique identifier like CS-<ID>

All clients should work with sessions, to receive messages

that are sent during offline state by the client. Automatic

reconnect should also be defined.

Clients should be implemented using MQTT 5 for this use

case if possible.

MQTT Publish - Orders and State
The CS Client publishes an Order to each AGV as a MQTT

Message with the following characteristics:

• QoS: 0

• Retained

• Identifier (CS-<Number>)

• Payload Format: UTF-8

• Content Type: JSON

• Message Pattern: Request-Response with correlation

data (orderId)

• Correlation Data

• OrderId

• User Properties:

• JSON Schema / Uri

• Payload: JSON ORDER description

After consuming the Order-Message by the AGV client and

processing the Order or parts of it, the corresponding Order

State has to be published to the orderState Topic.

The MQTT Publish of the AGV has following characteristics:

• QoS: 0

• Retained Flag

• Identifier (interface name, major Version, manufacturer,

serial Number)

• Payload Format: UTF-8

• Content Type: JSON

• Message Pattern: Request-Response with correlation

data (OrderId)

• Correlation Data

• OrderId

• User Properties:

• interface name, major Version, manufacturer, serial

Number

• Payload: JSON state description

The Order Id will be used as Correlation Data in both Publish

Messages, so that the AGV and the CS Client can identify the

Order from a message without reading the payload.

VDA 5050 A proposal for a MQTT Reference Architecture

14

MQTT Will, Client offline and online event
detection
An AGV client can be disconnected by the broker or a client

side action. If the client goes offline by disconnecting itself,

this state should also be determined at the control system.

In both cases a retained message with state OFF should be

sent by an AGV to the deviceState topic.

{interfaceName}/{majorVersion}/{manufacturer}/

{serialNumber}/deviceState

To get the device state from the clients, each client can

define a last will retained message and set up the WILL

Publish during CONNECT. If the Client goes offline, the WILL

message will be send to the specified topic.

Additionally, each client can publish a message to the

deviceState Topic to signal its ONLINE state.

The Will and the device State Message should contain:

• QoS 0

• Retained Flag

• Payload Format: binary

• Payload (ON/OFF – Byte)

• User Properties

• interface name, major Version, manufacturer, serial

Number

With MQTT 5, sending the will message can be configured

with a delay. This could be useful in cases where short

interruptions, with no influence. In such cases, the status

change should not send.

The Keepalive (heartbeat) can be configured on the broker

and client with a common default value of 60 seconds.

Conclusion

globe www.hivemq.com

15

The challenge for use cases resulting from the VDA

5050 specification to describe a best solution can be

implemented with the means of MQTT 5 and the use

of a broker, such as HiveMQ, who offers the necessary

key functions to operate a safe and stable system.

Data-related features such as specific formats and

their validation, as well as the use of metadata can be

perfectly described with MQTT 5 functions. There are

already implementations for different languages and

HiveMQ supports both MQTT 5 and MQTT 3 clients in

mixed scenarios.

Security is a very important key feature. The use of

standard solutions that support security in different

variants is optimal if different manufacturers are to be

integrated within one control system.

To support system changes without downtime, the

solution must be highly available and support ongoing

upgrades and migration scenarios. HiveMQ is highly

scalable and can support a growing number of AGVs

without problems.

HiveMQ offers a standard solution, the Control Center,

for monitoring and tracking for specific clients, topics

or messages in the production environment.

In order to integrate other systems such as a central

log system or add any business functionality, HiveMQ

can be expanded via the extension system. A large

number of open source solutions and standard

solutions are already available. With the help of the

Open HiveMQ Extension API, quite each business-

specific solution can be implemented.

The combination of HiveMQ and MQTT 5 to

implement the VDA 5050 use cases, would be a

perfect solution.tion.

Appendix

Client Implementation with HiveMQ MQTT library

Use case Communication of order and status information
The MQTT Clients (AGV and CS) examples are using the Java HiveMQ MQTT 5 Client library in the example code snippets.

AGV CLIENT
A Client is defined as MQTT 5 Client. A unique identifier is set. Automatic Retry is configured. The Identifier should be created
from the information about interface name, major version, manufacturer and serial number.

this.client = MqttClient.builder()
 .serverHost(BROKER_HIVEMQ_ADR)
 .serverPort(BROKER_HIVEMQ_PORT)
 .useMqttVersion5()
 .identifier(uniqueIdentifier)
 .automaticReconnectWithDefaultConfig()
 .buildBlocking();

The user properties, containing client information needed during information exchange. A retain will message is created, to leave
the device state at the device state topic if the client lost connection.

this.will = Mqtt5Publish.builder()
 .topic(deviceStateTopic)
 .qos(MqttQos.AT_MOST_ONCE)
 .userProperties(clientProperties)
 .payload(OFF)
 .retain(true)
 .build();

At Start the MQTT client will be connected with clean Start, setting the Session expiration interval, the user properties and the will
message.

Mqtt5ConnAck ack = client.connectWith()
 .cleanStart(cleanStart)
 .sessionExpiryInterval(expiryInterval)
 .userProperties(clientProperties)
 .willPublish(will)
 .send();

In success case, that can be figured out by the CONACK Message the AGV client has to subscribe to Order Topic with QoS 0.

For subscribing, the client behavior can be switched to asynchronous client mode, to easily work with acknowledgements, errors
and success cases. In case of retrieving a message (an order) on this topic, the Order will be consumed and processed by the
callback doConsumeOrder. The SUBACK Message can be evaluated and error handling can be done in this case.

final Mqtt5Subscription subscriptionOrder = Mqtt5Subscription.builder()
 .topicFilter(orderTopic)
 .qos(MqttQos.AT_MOST_ONCE).build();

client.toAsync().subscribeWith()
 .addSubscription(subscriptionOrder)
 .callback(this::doConsumeOrder)
 .send()
 .whenComplete((subAck, throwable) -> { /** Error handling **/ });

VDA 5050 A proposal for a MQTT Reference Architecture

16

private void doConsumeOrder(Mqtt5Publish publish) {
 // JSON is validated by the extension,
 // Can be assumed, that it is valid.
 String jsonOrder = new String(publish.getPayloadAsBytes());
 String jsonState = doOrder(jsonOrder);
 publishState(jsonState);
}

Using a validation extension that checks incoming MQTT publish messages directly on the broker, the content can be assumed to
be valid and can be processed by the client.

After consuming the Order information, the AGV client has to publish to the orderState Topic. The PUBLISH will be sent with QoS 0
and in addition sets also content-type and payload-format.

final Mqtt5Publish state = Mqtt5Publish.builder()
 .topic(orderStateTopic)
 .qos(MqttQos.AT_MOST_ONCE)
 .userProperties(clientProperties)
 .contentType(„application/json“)
 payloadFormatIndicator(Mqtt5PayloadFormatIndicator.UTF_8)
 .payload(jsonState.getBytes())
 .build();

client.toAsync().publish(state)
 .whenComplete((publishResult, throwable) -> { /** Error handling **/ });

At least for the device state a message can be sent, that informs the subscribed CS client about the liveness and readiness of the
AGV client.

final Mqtt5Publish state = Mqtt5Publish.builder()
 .topic(deviceStateTopic)
 .qos(MqttQos.AT_MOST_ONCE)
 .userProperties(clientProperties)
 .payload(ON)
 .retain(true)
 .build();

client.toAsync().publish(state)
 .whenComplete((publishResult, throwable) -> { /** Error handling **/ });

If the AGV client has to be disconnected or switched off, the device State OFF can be sent in a similar way. The DISCONNECT can
also be sent with user properties as additional information.

void stopAGVClient() {
 doSentDeviceState(OFF);
 client.disconnectWith()
 .reasonString(„Device graceful shutdown“)
 .userProperties(clientProperties)
 .send();
}

globe www.hivemq.com

17

CS CLIENT
Similar to the AGV client, one or more CS Clients connect as MQTT 5 Client. A unique identifier is set. This could be a pattern like
CS_<ID>. The MQTT CONNECT initializes the session with a clean start and sets the expiry interval. Automatic retry is configured.

At the start the CS Client could check the state of all vehicles from the information, published to the deviceState Topic, where the
message is stored as a retained message. For this the CS client must subscribe to the deviceState.

Based on this information, the CS client could send new Orders only the active AVGs.
The target topic can either be derived from the user properties or from the topic where the messages arrived.
The Payload Format is the marked as UTF-8 and with content type application / json. To have the OrderId available, without

parsing the payload, the order Id should be transported as correlation data in the order related MQTT Publishes.

void doPublishOrder(Mqtt5UserProperties avgClientProperties) {
 //depending from the content described by the properties,
 //the vehicle can get informed about the next actions
 final String avgClientBaseTopic = getTopicFromProperties(avgClientProperties);

 final Mqtt5Publish state = Mqtt5Publish.builder()
 .topic(avgClientBaseTopic)
 .qos(MqttQos.AT_MOST_ONCE)
 .userProperties(avgClientProperties)
 .payloadFormatIndicator(Mqtt5PayloadFormatIndicator.UTF_8)
 .contentType(„application/json“)
 .payload(JsonOrder)
 .correlationData(orderId)
 .retain(true)
 .build();

 client.toAsync().publish(state)
 .whenComplete((pubResult, throwable) -> { /** Error handling **/ });
}

Additionally, at the beginning, the CS Client subscribes to the orderState Topic of all AGV clients by using the wildcard
subscription (+) to get information about the order state for all vehicles. Using several CS clients, a shared subscription has to be
used here.

client.toAsync().subscribeWith()
 .addSubscription(‘+/+/+/+/orderState’)
 .callback(this::doConsumeState)
 .send()
 .whenComplete((subAck, throwable) -> { /** Error handling **/ });

By getting a callback, when an AGV client publishes its State to the orderState Topic, this information has to be consumed.

private void doConsumeState(Mqtt5Publish publish) {
 final Mqtt5UserProperties clientProperties = publish.getUserProperties();
 //depending from the content of the props (position, client information...)
 doPublishOrder(clientProperties);
}

The CS Client can consume the information and react for example by publishing a new Order.

VDA 5050 A proposal for a MQTT Reference Architecture

18

HiveMQ Configuration recommendations
A Message Broker cluster with 3 nodes is a robust and safe installation, able to handle the described scenario during normal
operations and peak load situations.

Some general recommendations:
• Cluster discovery can be configured static or dynamically, depending on the underlying infrastructure. The open source

Extensions for DNS or S3 Cluster discovery can be used here. HiveMQ Docker files, also with Cluster mode are available on
Docker Hub.

• If the Message Broker must be maintained in a public zone, Cluster communication should be secured with TLS.
• MQTT Listeners should be set up with TLS, use 8883 as the standard TLS port.
• Replication count could set up to 2, so that the cluster is fully replicated.
• MQTT Restrictions for Message Expiry, Session Expiry, aligned to the use case.
• Restriction for maximum amount of connections, as expected from the use cases.
• Configure an overload protection with burst rate and normal rate.
• For Authentication the HiveMQ ESE is recommended.
• The Access to the HiveMQ Control Center should be handled via the HiveMQ ESE.
• For Monitoring the open source Prometheus- or InfluxDB extension in combination with a Grafana Dashboard are

recommended.

All configurations, including requirements, best practice and default settings can be found in detail described at the HiveMQ

Documentation.

 

Glossary

 VDA5050 SCHNITTSTELLE ZUR KOMMUNIKATION ZWISCHEN FAHRERLOSEN
TRANSPORTFAHRZEUGEN (FTF) UND EINER LEITSTEUERUNG

 AGV Automated Guided Vehicle

 AGVS Automated Guided Vehicle System

 CS Control System

globe www.hivemq.com

19

http://hivemq.com/docs/
http://hivemq.com/docs/

Ergoldingerstr. 2a

84030 Landshut

Germany

www.hivemq.com

© HiveMQ GmbH 2020

