
TLS BENCHMARKS
HiveMQ 3.1.0 on AWS

03/2016

TLS	Benchmarks	
HiveMQ	3.1	on	AWS

Introduction

HiveMQ is a highly scalable Enterprise MQTT Broker designed for lowest latency and very high
throughput while supporting state-of-the-art security. This benchmark document compares
key runtime metrics of HiveMQ for MQTT + TLS 1.2 with runtime metrics of HiveMQ with
MQTT over TCP.

The goal of this document is to explore how the use of TLS 1.2 affects the performance and
resource consumption of HiveMQ. The servers used in the benchmark scenarios are typical
servers HiveMQ customers use on a day-to-day basis and there are no obscure settings
applied which could falsify the results. HiveMQ is installed with the default configuration and
while there are many performance relevant knobs available in HiveMQ, the benchmarks were
executed without any optimization. All Quality of Service benchmarks use disk persistence so
all guarantees the MQTT specification requires are in place.

INFO: This is a technical document and it’s assumed that the reader is familiar with the basic
principles and concepts of MQTT and TCP/IP.

 
Benchmark Environment

All benchmarks were executed on Amazon Web Services (AWS), a cloud infrastructure provider.

AWS allows to deploy servers on a shared environment and is often used for cloud services.
AWS is by far the most popular cloud provider of HiveMQ customers, so using AWS for the
benchmark was a natural choice.

Important: Virtual Machines by definition can't be as performant as physical hardware. If multiple
VMs share the same hardware, the CPU utilization is not necessarily as expressive as on real
hardware. No dedicated hardware servers were used in this benchmark and no AWS dedicated
instances were used.

© 2016 dc-square GmbH HiveMQ 3.1.0 TLS Benchmark 1

TLS	Benchmarks	
HiveMQ	3.1	on	AWS

Benchmark Scenarios

Each of the benchmarks shows the resource consumption in terms of CPU and Java heap
space when using MQTT with and without TLS 1.2. The benchmark was not designed for
stress testing MQTT clients or the broker. It was created to learn about the behaviour and
performance differences when TLS is in place.

The benchmark uses one server instance of the HiveMQ Benchmark Tool running on a EC2
instance and HiveMQ, running on a separate EC2 instance. Both servers were hosted in the
same AWS availability zone.

OpenJDK 1.7.0_79 was used in these benchmarks.

The RSA X509 server certificate had a key size of 4096-bit.

Hardware

HiveMQ Server Instance
The following EC2 Instance Type was used for the HiveMQ installation:

The c4.2xlarge Instance Type is an AWS EC2 Instance for computing intensive applications and
has 8 (virtual) cores.

Important: All EC2 instances in this benchmark are shared instances, not dedicated instances,
which means the CPU steal time is significantly higher than on dedicated instances. This is the most
common deployment type we saw from customers, so the goal was not to artificially improve the
results by using an uncommon deployment setup.

© 2016 dc-square GmbH HiveMQ 3.1.0 TLS Benchmark 2

HiveMQ EC2 Instance Details

Name Value

Instance Type C4.2xlarge

RAM 15GiB (~16GB)

vCPU 8

Physical Processor Intel Xeon E5-2666 v3

Clock Speed (GHz) 2.9

TLS	Benchmarks	
HiveMQ	3.1	on	AWS

10.000 MQTT Clients without TLS

This benchmark spawns 10.000 real MQTT clients,
connects the MQTT clients in batches of 100 clients
per second without using TLS, subscribes all MQTT
clients to a unique topic per client and finally each
client publishes one message in 10 seconds.

© 2016 dc-square GmbH HiveMQ 3.1.0 TLS Benchmark 3

CPU utilization

CP
U

20 %
40 %
60 %
80 %

100 %

Minutes
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

CPU

Connecting
Clients

Publish
Receive

Subscribing
Clients

Test Parameters

MQTT Clients 10.000

Messages / Second 1.000

Connections / Second 100

Quality of Service Level 1

Memory utilization

Ja
va

 H
ea

p

0 MB

150 MB

300 MB

450 MB

600 MB

Minutes
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Memory

Connecting
Clients

Publish
Receive

Subscribing
Clients

Bandwidth usage

Ne
tw

or
k

M
B/

m
in

10MB

20MB

30MB

Minutes
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Network IN Network OUT

Connecting
Clients

Publish
Receive

Subscribing
Clients

TLS	Benchmarks	
HiveMQ	3.1	on	AWS

10.000 MQTT Clients with TLS

This benchmark spawns 10.000 real MQTT clients,
connects the MQTT clients in batches of 100 clients
per second using TLS, subscribes all MQTT clients to
a unique topic per client and finally each client
publishes one message in 10 seconds.

The cipher suite used for this benchmark was TLS_RSA_WITH_AES_128_CBC_SHA

© 2016 dc-square GmbH HiveMQ 3.1.0 TLS Benchmark 4

CPU utilization

CP
U

20 %
40 %
60 %
80 %

100 %

Minutes
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

CPU

Connecting
Clients

Publish
Receive

Subscribing
Clients

Test Parameters

MQTT Clients 10.000

Messages / Second 1.000

Connections / Second 100

Quality of Service Level 1

Memory utilization

Ja
va

 H
ea

p

0 MB

200 MB

400 MB

600 MB

800 MB

Minutes
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Memory

Connecting
Clients

Publish
Receive

Subscribing
Clients

Bandwidth usage

Ne
tw

or
k

M
B/

m
in

13MB

27MB

40MB

Minutes
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Network IN Network OUT

Connecting
Clients Publish

Receive

Subscribing
Clients

TLS	Benchmarks	
HiveMQ	3.1	on	AWS

50.000 MQTT Clients without TLS

This benchmark spawns 50.000 real MQTT clients,
connects the MQTT clients in batches of 100 clients
per second without using TLS, subscribes all MQTT
clients to a unique topic per client and finally each
client publishes one message in 10 seconds.

© 2016 dc-square GmbH HiveMQ 3.1.0 TLS Benchmark 5

CPU utilization

CP
U

20 %
40 %
60 %
80 %

100 %

Minutes
1 3 5 7 9 11 13 15 17 19 21 23 25 27

CPU

Connecting
Clients

Publish
Receive

Subscribing
Clients

Test Parameters

MQTT Clients 50.000

Messages / Second 5.000

Connections / Second 100

Quality of Service Level 1

Memory utilization

Ja
va

 H
ea

p

0 MB

550 MB

1.100 MB

1.650 MB

2.200 MB

Minutes
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 1819 20 21 22 23 24 2526 27 28 29

Memory

Connecting
Clients

Publish
ReceiveSubscribing

Clients

Bandwidth usage

Ne
tw

or
k

M
B/

m
in

35MB

70MB

105MB

140MB

Minutes
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Network IN Network OUT

Connecting
Clients

Publish
Receive

Subscribing
Clients

TLS	Benchmarks	
HiveMQ	3.1	on	AWS

50.000 MQTT Clients with TLS

This benchmark spawns 50.000 real MQTT clients,
connects the MQTT clients in batches of 100 clients
per second using TLS, subscribes all MQTT clients to
a unique topic per client and finally each client
publishes one message in 10 seconds.

The cipher suite used for this benchmark was TLS_RSA_WITH_AES_128_CBC_SHA

© 2016 dc-square GmbH HiveMQ 3.1.0 TLS Benchmark 6

CPU utilization

CP
U

20 %
40 %
60 %
80 %

100 %

Minutes
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

CPU

Connecting
Clients

Publish
ReceiveSubscribing

Clients

Test Parameters

MQTT Clients 50.000

Messages / Second 5.000

Connections / Second 100

Quality of Service Level 1

Memory utilization

Ja
va

 H
ea

p

0 MB

1.000 MB

2.000 MB

3.000 MB

4.000 MB

Minutes
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1718 19 20 21 22 23 2425 26 27 28

Memory

Connecting
Clients

Publish
Receive

Subscribing
Clients

Bandwidth usage

Ne
tw

or
k

M
B/

m
in

40MB

80MB

120MB

160MB

Minutes
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Network IN Network OUT

Connecting
Clients

Publish
Receive

Subscribing
Clients

TLS	Benchmarks	
HiveMQ	3.1	on	AWS

Summary & Discussion

The benchmarks demonstrated that the use of TLS comes with a cost in terms of resource
consumption. The TLS handshake when connecting 100 MQTT clients per second is rather
expensive in terms of CPU. The use of 4096-bit certificates caused - in addition to the
TLS_RSA_WITH_AES_128_CBC_SHA cipher suite - additional overhead compared to lower key
sizes. Using a 2048-bit instead of a 4096-bit certificate could reduce CPU load for the TLS
handshake by factor 2x-5x.

The average HiveMQ memory usage increased when using TLS by factor 1.1x - 1.8x. The
additional memory is caused by the need for allocating additional buffers for TLS, so this
needs to be taken into account for sizing production servers correctly.

The total incoming and outgoing bandwidth usage increased when using TLS, which is an
expected result since a CBC cipher suite (TLS_RSA_WITH_AES_128_CBC_SHA) was used.

 
CPU Comparisons

The following charts compare the CPU utilization for scenarios with and without TLS.

The CPU overhead for the TLS handshake is significant and the CPU usage shows a clear spike
— only while initially connecting MQTT clients — compared to the scenarios without TLS.
While noticeable, the CPU consumption for TLS when clients are publishing and subscribing is
not significant.

© 2016 dc-square GmbH HiveMQ 3.1.0 TLS Benchmark 7

CPU utilization - 10.000 Clients

CP
U

20 %
40 %
60 %
80 %

100 %

Minutes
0 2 4 6 8 10 12 14 16 18

Without TLS With TLS

CPU utilization - 50.000 Clients

CP
U

20 %
40 %
60 %
80 %

100 %

Minutes
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

Without TLS With TLS

All Clients  
connected

All Clients  
connected

TLS	Benchmarks	
HiveMQ	3.1	on	AWS

MQTT and TLS

MQTT uses long-living TCP connections, which means the TLS handshake takes place — in the
best case — once in the lifetime of a MQTT client. The benchmark demonstrated that the TLS
overhead is very small and almost negligible once the TLS handshake finished. If the MQTT
broker faces frequent client reconnects and thus the TLS handshake consumes too much CPU,
the following alternatives could be considered:

• Using a Load Balancer with SSL Termination. Many Load Balancers support SSL offloading
which can increase performance significantly.

• SSL Session Resumption with Session IDs can be used to avoid a complete TLS handshake
when a MQTT client reconnects. Bear in mind that session resumption is most secure
when using cipher suites that have Perfect Forward Secrecy characteristics.

• X509 certificates with smaller key length (e.g. 1024-bit or 2048-bit) could be used.
• Elliptic Curve Cryptography (ECC) could potentially reduce CPU consumption

Different TLS Cipher Suites may have different performance characteristics. Our recommendation is
to stick with the most secure cipher suites available for your MQTT clients and your JVM, especially if
you are planning to use SSL Session Resumption.

 
 
Conclusion

Using TLS 1.2 can dramatically improve security of the MQTT system. The tradeoff for using
TLS 1.2 with MQTT was explored in this benchmark. The tests revealed that the TLS handshake
is by far the most expensive operation, especially with high X509 certificate key lengths. The
TLS overhead once a client is connected is negligible. The fact that MQTT uses long-living TCP
connections make TLS and MQTT a natural choice for secure messaging deployments as the
TLS handshake is essentially a cost to pay once (instead of with every request when using e.g
HTTPS) and the runtime overhead of TLS is insignificant. The use of SSL Session resumption,
which is supported by HiveMQ without further configuration, reduces the TLS Handshake
overhead even further.

The benchmark demonstrated that the Enterprise MQTT Broker HiveMQ still delivers stellar
performance when using state-of-the-art security mechanisms like TLS 1.2 with 4096-bit X509
certificates.

© 2016 dc-square GmbH HiveMQ 3.1.0 TLS Benchmark 8

TLS	Benchmarks	
HiveMQ	3.1	on	AWS

HiveMQ is the MQTT broker for the connected enterprise:
The puzzle piece between constrained devices and enterprise systems.

HiveMQ is scalable, secure and simple

http://www.hivemq.com

http://www.hivemq.com
http://www.hivemq.com

